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Big Questions

1. Where and how are the heavy elements 
synthesized ?!

2. How do massive stars evolve and explode ? !
3. What are the nuclear and neutrino 

processes that shape cosmic explosions 
and nucleosynthesis ?    !

4. What are the phases and properties of 
matter encountered in neutron stars, 
supernova and binary neutron star 
mergers ?!

5. Can we interpret multi-messenger signals 
with advanced modeling and simulations to 
extract fundamental nuclear physics ?



Nuclear Astrophysics in the Multi-Messenger Era
Gravitational Wave Sources
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Origin of R-Process Nuclei
  Core Collapse Supernovae or NS Binary Mergers?

  

! 

˙ M A >130 ~ 5 "10#7 M! yr -1
Galactic Galactic r-process r-process rate:rate:

fraction offraction of  r-process  r-process  contributedcontributed
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Abundances: Neutrinos Gravitational Waves 
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Star !

Supernova 

!
Neutron Star !

!

Sources 
Binary Neutron Star Mergers         

Hypernova 
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X-ray Bursts 
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Thermal Relaxation in 	

Accreting Neutron Stars 	


Figure 3: Neutron star (NS) mass-radius diagram. The plot shows non-
rotating mass versus physical radius for several typical NS equations of state
(EOS)[25]. The horizontal bands show the observational constraint from our
J1614−2230 mass measurement of 1.97±0.04 M⊙, similar measurements for
two other millsecond pulsars[3, 26], and the range of observed masses for
double NS binaries[2]. Any EOS line that does not intersect the J1614−2230
band is ruled out by this measurement. In particular, most EOS curves in-
volving exotic matter, such as kaon condensates or hyperons, tend to predict
maximum NS masses well below 2.0 M⊙, and are therefore ruled out.

10

-40

-30

-20

-10

 0

 10

 20

 30

-40

-30

-20

-10

 0

 10

 20

 30

Ti
m

in
g 

re
sid

ua
l (
µ

s)

-40

-30

-20

-10

 0

 10

 20

 30

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Orbital Phase (turns)

7

Massive Neutron Star	


T  = 5.5x10  K

Rapid Cooling 	

in Cas A	


Transient with kilo-nova luminosity (Metzger et al. 2010, Roberts et al. 2011, 
Goriely et al. 2011): direct observation of r-process, EM counter part to GW

Radioactive decay in neutron star mergers

Multi messenger (e.g. Metzger & Berger 2012, Rosswog 2012, Bauswein et al. 2013)

Berger, Fong & Chornock, 2013
Tanaka & Hotokezaka, 2013, Hotokezaka et al. 2013
Grossman, Korobkin, Rosswog, Piran, 2014

Kilo Nova (r-process ?)	


Driven by Observations



Nailing the Neutron Matter EoS at Saturation Density. 
Complete N3LO calculation of neutron matter 

first complete N3LO result Tews, Krüger, Hebeler, AS (2013) 

includes uncertainties from NN, 3N (dominates), 4N  

Other ab initio calculations 
AFDMC based on AV8’ NN + UIX 3N potentials Gandolfi, Carlson, Reddy (2012) 

 
 
 
 
 
 
 
 
constructed different 3N forces 
with symmetry energy range 
between NN only and NN+3N 
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FIG. 3: (Color online) Occupation probabilities of neutron
matter as a function of momentum for selected densities rang-
ing from n = 0.011 to 0.088 fm−3 arising from the evolution
Hamiltonian Ĥev.

orbitals. The expectation values of the evolution Hamil-
tonian and the chiral nuclear potential at imaginary time
τ = 0 are then simply the lattice Hartree-Fock ener-
gies. Deviations between the continuum Hartree-Fock
predictions and those of the lattice were found to be at
most a few percent when the particle number corresponds
to closed shells in the free Fermi gas model on the lat-
tice. In Fig. 2 we show the evolution in imaginary time
of ⟨ψ(τ)|Ĥev|ψ(τ)⟩ and ⟨ψ(τ)|ĤEFT|ψ(τ)⟩ for the lowest
density n = 0.011 fm−3. Note that the left- and right-
hand wavefunctions are evolved separately. Typically
we observe a very good convergence for imaginary times
about τ ≈ 0.1MeV−1, which requires about 300 imagi-
nary time steps. Apart from a nearly constant shift, the
imaginary-time dependence for both expectation values
is very similar, indicating that our fitting procedure in-
deed produces the evolution potential, which correctly
captures global features of the chiral potential.

Our calculation procedure gives us access to the wave
function in both the coordinate and momentum repre-
sentation. In Fig. 3 we show the momentum distribution
associated with the evolution Hamiltonian Ĥev for pure
neutron matter at selected densities. As the density in-
creases and the evolution Hamiltonian weakens, the de-
pletion in the occupation probability at low momenta is
reduced. In all simulations the single-particle occupation
probabilities for the highest energy states is below one
percent.

In Fig. 4 we present AFQMC results for the equation of
state of pure neutron matter. Evaluating only the chiral
two-nucleon force in the correlated ground state (shown
in red solid circles), we find that the equation of state
is consistent with previous quantum Monte Carlo simu-
lations employing N2LO chiral 2N interactions [17, 18].
Computing also the expectation value of the N2LO three-
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FIG. 4: (Color online) Equation of state of pure neutron
matter calculated using AFQMC with the N3LO chiral two-
nucleon potential (red circles) plus the N2LO three-nucleon
contribution (blue diamonds). For comparison, the gray open
circles and squares, respectively, show the results [17, 18] of re-
cent QMC calculations with N2LO chiral nuclear forces with-
out three-body interactions. Upper-left inset: contribution
to the energy per particle from different orders in the chi-
ral expansion (“+” and “−” refer to repulsive and attractive
components, respectively). Lower-right inset: comparison be-
tween the expectation values of Ĥev and ĤEFT in the corre-
lated many-body ground state.

nucleon force over the evolved wavefunction introduces
significant additional repulsion above n = 0.02 fm−3, as
seen from the solid blue diamonds in Fig. 4. Differences
between the expectation value of the evolution Hamil-
tonian and the full chiral nuclear 2N + 3N interaction
(which can be regarded as the first-order correction to
the energy in perturbation theory) are small as shown in
the lower-right inset to Fig. 4. In the upper-left inset,
we show the expectation value of the chiral Hamiltonian
decomposed according to the chiral order.

In the above calculations we translate the lattice re-
sults to the continuum limit with the following proce-
dure: i) from the lattice simulations we extract the di-

mensionless quantity
⟨ψ|Ô|ψ⟩
⟨ψ0|Ô|ψ0⟩

, where ψ is the ground

state of the evolution Hamiltonian, ψ0 is the free Fermi
gas wave function, and both expectation values are com-
puted on the lattice, ii) to convert the lattice result into
a dimensionful quantity we multiply by ⟨ψ0|Ô|ψ0⟩(cont.),
computed in the continuum limit.

Conclusions.— We have presented calculations of the

QMC:  L
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MBPT:  
Chira

l In
teractions 

First steps towards 
quantifying 
uncertainties due to 
the interaction and 
many-body theory.  

With implications 
for neutron star 
mass and radius. 

Neutron star radius constraints 

uncertainty from many-body forces and general extrapolation 
 
 

 
   
 
 
 
 
 
 
 
 
 
constrains neutron star radius: 9.7-13.9 km for M=1.4 Msun (±18% !) 
 

consistent with extraction from X-ray burst sources Steiner et al. (2010) 
provides important constraints for EOS for core-collapse supernovae 
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FIG. 2. (Color online) Mass-radius relation for the EoS with
three-neutron interactions corresponding to the bands for dif-
ferent E

sym

shown in Fig. 1. The intersections with the orange
lines roughly indicate central densities realized in these stars.

for the hydrostatic structure of a spherical non rotating
star using the QMC equation of state for neutron matter
[30, 31]. The QMC EoS we use is for ⇢ � ⇢

crust

= 0.08
fm�3. Below this density we use the EoS of the crust
obtained in earlier works in Refs. [32] and [33].

The neutron star mass-radius predictions are obtained
by varying the 3n force and are shown in Fig. 2. The
striking feature is the estimated error in the neutron star
radius with a canonical mass of 1.4 M

solar

. The uncer-
tainty in the measured symmetry energy of ±2 MeV leads
to an uncertainty of about 3 km for the radius, while the
uncertainties in the short-distance structure of the 3n
force predicts a radius uncertainty of <⇠ 1 km. The dif-
ferent bands of Fig. 2 correspond to the EoS of Fig. 1
with the same colors, giving di↵erent values of E

sym

.
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FIG. 3. (Color online) Bounds on the maximum mass and
radius for di↵erent equations of state as a function of the
critical density ⇢c. The left panel shows the maximum mass;
the right top and bottom panels show the maximum possible
radius for any neutron star with mass greater than 1.2M

solar

and for a neutron star with M = 1.4M
solar

, respectively.

The central density of stars with M >⇠ 1.5M
solar

are
larger than 3⇢

0

. At these higher densities, e↵ects such as
relativistic corrections to the kinetic energy, retardation

in the potential, and four- and higher body forces become
important. Consequently, non-relativistic models violate
causality and predict a sound speed cs =

p
@p/@✏>⇠ c for

⇢ ' (4� 5)⇢
0

. To overcome this deficiency we adopt the
strategy suggested in Ref. [34] and replace the EoS above
a critical density ⇢c by the maximally sti↵ or causal EoS
given by p(✏) = c2✏ � ✏c, where p is the pressure, ✏ is
the energy density, c is the speed of light and ✏c is a
constant. This EoS is maximally sti↵ and predicts the
most rapid increase of pressure with energy density with-
out violating causality. The constant ✏c is the parameter
that determines the discontinuity in energy density be-
tween the low- and high-density equations of state. Our
choice of ✏c ensures that the energy density is continuous
and provides an upper bound on both the radius and the
maximum mass of the neutron star.

Figure 3 shows how the bounds on the maximum ra-
dius and mass of the neutron star vary with our choice of
the critical density ⇢c. It also illustrates that the bounds
provide useful constraints only when the EoS is known up
to (2� 3)⇢

0

. In Ref. [35] bounds on the radius were de-
rived by using an EoS of neutron matter calculated up to
⇢
0

with specific assumptions about polytropic equations
of state at higher densities. Our upper bounds are model
independent and show that the radius of a 1.4M

solar

neu-
tron star can be as large as 16 km if ⇢c = ⇢

0

. To obtain a
tighter bound the equation of state between 1⇢

0

and 2⇢
0

is important. The red, green, blue and black curves are
predictions corresponding to the 3n interaction strength
fit to E

sym

= 30.5, 32.0, 33.7 and 35.1 MeV, respectively.
We also note that these bounds do not change much for
⇢c >⇠ 4⇢

0

because the QMC EoS is already close to being
maximally sti↵ in this region. These upper bounds pro-
vide a direct relation between the experimentally measur-
able nuclear symmetry energy and the maximum possible
mass and radius of neutron stars.

To summarize, we predict that the correlation between
the symmetry energy and its derivative at nuclear den-
sity is nearly independent of the detailed short-range 3n
force once its strength is tuned to give a particular value
of E

sym

. Consequently, in our model one short-distance
parameter AR completely determines the behavior of the
EoS. At higher density, the sensitivity to short-distance
behavior of the 3n interaction translates to an uncer-
tainty of about 1 km for the neutron star radius with
mass M = 1.4M

solar

. The uncertainty at high density
due to a poorly constrained symmetry energy is larger,
' 3 km. Within our model we predict that neutron star
radii are in the 10 � 13 km range for nuclear symmetry
energy in the range 32� 34 MeV. If nuclear experiments
can determine that E

sym

 32 MeV, QMC predicts that
L <⇠ 45 MeV at nuclear density, and for neutron stars it
predicts M

max

< 2.2M
solar

and R < 12 km for a neutron
star with M = 1.4M

solar

. The relationship between the
symmetry energy and its density dependence is exper-
imentally relevant, and its implications on the neutron
star mass radius relationship are subject to clear obser-
vational tests.
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Neutron Matter & Symmetry Energy 
EoS of neutron matter and its relation 
to the properties of nuclei.   

Symmetry energy and pressure of neutron matter 
neutron matter band predicts 
symmetry energy Sv and 
its density derivative L 
 
comparison to experimental 
and observational constraints 
Lattimer, Lim, ApJ (2012), EPJA (2014) 

 
neutron matter constraints 
H: Hebeler et al. (2010) 
G: Gandolfi et al. (2011)  

provide tight constraints! 
 
combined with Skyrme EDFs 
predicts neutron skin 
208Pb: 0.182(10) fm 
48Ca:  0.173(5) fm 
Brown, AS, PRC (2014) 
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Nuclear Symmetry Energy

Defined as the di↵erence between energies of pure neutron matter
(x = 0) and symmetric (x = 1/2) nuclear matter.

S(⇢) = E (⇢, x = 0)� E (⇢, x = 1/2)

Expanding around the saturation density
(⇢s) and symmetric matter (x = 1/2)

E (⇢, x) = E (⇢, 1/2)+(1�2x)2S2(⇢)+. . .

S2(⇢) = Sv +
L

3

⇢� ⇢s
⇢s

+ . . .

Sv ' 31 MeV, L ' 50 MeV

C. Fuchs, H.H. Wolter, EPJA 30(2006) 5

6

?

symmetry energy

Connections to pure neutron matter:

E (⇢s , 0) ⇡ Sv + E (⇢s , 1/2) ⌘ Sv � B , p(⇢s , 0) = L⇢s/3

Neutron star matter (in beta equilibrium):

@(E + Ee)

@x
= 0, p(⇢s , x�) '
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• Nuclear measurements (neutron skin, 
isospin diffusion, dipole polarizability) 
correlate S & L.   

• Neutron star radius is sensitive to L.  
• Theory can help combine and understand 

the systematics    

Neutron skin of 208Pb 
probes neutron matter energy/pressure, 
neutron matter band predicts 
neutron skin of 208Pb: 0.17±0.03 fm (±18% !) 
Hebeler, Lattimer, Pethick, AS, PRL (2010) 
 
 

in excellent agreement with extraction from complete E1 response 
0.156+0.025-0.021 fm 
  
 
 
 
PREX: neutron skin from parity-violating electron-scattering at JLAB 
electron exchanges Z-boson, couples preferentially to neutrons 
goal II: ±0.06 fm 

	����
�
�����


����

�����
�

rskin [208Pb] (fm)

D
 [20

8 P
b]

 (f
m

3 )

Figure Courtesy: Lattimer (2014)

0.168± 0.022 fm

0.156+0.025
�0.021 fm

0.34+0.15
�0.17 fmPREX:

 αD !

(Tamii et al.) 

208Pb rskin

Theory:

Piekarewicz et al. (2012)



Radii from Astronomy, Astrophysics and Nuclear Physics 

• Extracting radii from observations is challenging due to large systematic errors.  !
• Astrophysical modeling, and input from nuclear theory can help disentangle and 

reduce systematics.    

Heinke et al, and Steiner & Lattimer  (2014)28
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Fig. 17.— Figure showing the constraint on the dEoS imposed by the radius measurement obtained in this work: RNS = 9.1+1.3
−1.5 km

(90%-confidence). The dark and light shaded areas show the 90%-confidence and 99%-confidence constraints of the RNS measurement,
respectively. The mass measurement of PSR J1614-2230 is shown as the horizontal band (Demorest et al. 2010). “Normal matter” EoSs
are the colored solid lines. Other types of EoSs, such as the hybrid or quark-matter EoSs are included for comparison, with dashed lines.
As mentioned in Section 5, the present analysis only places constraints on the “normal matter” EoSs since they are the only family of EoSs
included in our assumptions. Among them, only the very soft dEoSs (such as WFF1, Wiringa et al. 1988) are consistent with the radius
obtained here. The EoS are obtained from Lattimer & Prakash (2001, 2007).

distribution, i.e., with the fewest assumptions, that can
be produced. Also, the progressive relaxation of the as-
sumptions throughout the analysis demonstrated that no
unexpected behavior was present in the final MNS–RNS
distributions of Run #7 and that the resulting low-value
of RNS was not affected by systematics.
Previous works reported low values of NS radii, but

these measurements have high uncertainties due to low
S/N, leading to poorly constrainedRNS andMNS (e.g., in
NGC 2808, Webb & Barret 2007; Servillat et al. 2008).
Another qLMXB in NGC 6553 was identified with a
small radius, RNS = 6.3+2.3

−0.8 km (90%-confidence) for
MNS = 1.4M⊙ (Guillot et al. 2011b). However, low-
S/N Chandra observations demonstrated that the XMM
spectra of the source was affected by hard X-ray contami-
nation from a marginally resolved nearby source. Higher-
S/N observations with Chandra are necessary to confirm
the qLMXB classification and produce the uncontami-
nated spectrum necessary for its use in the present anal-
ysis.
In addition to qLMXB RNS measurements, low radii

were found from the analysis of photospheric radius ex-
pansion type-I X-ray bursts. A review of the method
used to determine RNS from these sources can be found
in the literature (Özel 2006; Suleimanov et al. 2011b).
The LMXBs EXO 1745-248, 4U 1608-52, and 4U 1820-
30 were found to have respective radii in the 2σ ranges
RNS = [7.5 − 11.0] km (Özel et al. 2009), RNS = [7.5 −
11.5] km (Güver et al. 2010a) and RNS = [8.5 − 9.5] km
(Güver et al. 2010b), respectively. While these results
are on a par with what is found in this paper, controversy
emerged with the realization that the analysis presented
in the cited works was not internally consistent because
the most probable observables (from Monte-Carlo sam-

pling) led to imaginary masses and radii (Steiner et al.
2010). Relaxing the assumption that the photospheric
radius equals the physical radius RNS at touchdown led
to real-valued solutions of MNS and RNS, and to larger
upper limits for the radius. Furthermore, it is argued
in a later work that the short bursts from EXO 1745-
248, 4U 1608-52 and 4U 1820-30 are not appropriate for
such analysis because the post-burst cooling evolution
of these sources does not match the theory of passively
cooling NSs (Suleimanov et al. 2011a). Therefore, the
MNS–RNS constraints from type I X-ray bursts should
be considered with these results in mind.
More recently, distance independent constraints in

MNS–RNS space were produced from the analysis
of the sub-Eddington X-ray bursts from the type I
X-ray burster GS 1826-24 (Zamfir et al. 2012). That
analysis, performed for a range of surface gravities
(log10 (g) = 14.0, 14.3, 14.6) and a range of H/He abun-
dances (0.01 Z⊙, 0.1 Z⊙ and Z⊙) led to radii RNS ∼<
11.5 km. While distance-independent, the results are
highly influenced by the atmosphere composition and
metallicity. For pure He composition, the upper limit
of RNS becomes RNS ∼< 15.5 km (Zamfir et al. 2012).
Finally, the multiwavelength spectral energy distri-

bution of the isolated neutron star RX J185635-3754
was analyzed to produce small values of RNS and MNS
with no plausible dEoS consistent with these values:
RNS ∼ 6 km and MNS ∼ 0.9M⊙ for d = 61 pc
(Pons et al. 2002). A recent distance estimation to the
source d = 123+11

−15 pc (Walter et al. 2010) led to revised
values: RNS = 11.5±1.2 km and MNS = 1.7±1.3M⊙
(Steiner et al. 2012). While this result is consistent with
the RNS measurement obtained in this paper and with
the other works reporting low-RNS values, it has to

Figure adapted from 
Guillot et al (2014)

Guillot et al (2014)
Steiner et al, Heinke et al  (2014)

Chandra XMM Hubble



Core Collapse Supernova
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• Mature 2D models predict 
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Fig. 3.— Mass fractions outside 150 km from the center vs. Ye

(top) and S/kB (bottom) at the end of simulation for the x-y, x-
z, and y-z planes. The widths of Ye and S/kB are chosen to be
∆Ye = 0.01 and ∆S/kB = 1, respectively.

only, is a consequence of the wide Ye distribution pre-
dicted from our full-GR, neutrino transport simulation.
Note also that fission plays a subdominant role for the
final nucleosynthetic abundances. The second (A ∼ 130)
and rare-earth-element (A ∼ 160) peak abundances are
dominated by direct production from the trajectories of
Ye ∼ 0.2. Our result reasonably reproduces the solar-like
abundance ratio between the second (A ∼ 130) and third
(A ∼ 195) peaks as well, which is difficult to explain by
fission recycling.
Given that the model is representative of NS-NS merg-

ers, our result gives an important implication; the dy-
namical ejecta of NS-NS mergers can be the dominant
origin of all the Galactic r-process nuclei. Other con-
tributions from, e.g., the BH-torus wind after collapse of
HMNSs, as invoked in the previous studies to account for
the (solar-like) r-process universality, may not be needed.
The amount of entirely r-processed ejectaMej ≈ 0.01M⊙

with present estimates of the Galactic event rate (a few
10−5 yr−1, e.g., Dominik et al. 2012) is also compatible
with the mass of the Galactic r-process abundances as
also discussed in previous studies (Korobkin et al. 2012;
Bauswein et al. 2013).

4. RADIOACTIVE HEATING

The r-processing ends a few 100 ms after the merging.
The subsequent abundance changes by β-decay, fission,
and α-decay are followed up to t = 100 days; the re-
sulting radioactive heating is relevant for kilonova emis-
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Fig. 4.— Final nuclear abundances for selected trajectories
(top) and that mass-averaged (bottom; compared with the solar
r-process abundances).

sion. Figure 5 displays the temporal evolutions of the
heating rates for selected trajectories (top-left) and those
mass-averaged (top-right). For comparison purposes, the
heating rate for the nuclear abundances with the solar r-
process pattern (for A ≥ 90, q̇solar−r; same as that used in
Hotokezaka et al. 2013a; Tanaka et al. 2014), β-decaying
back from the neutron-rich region, is also shown in each
panel. The short-dashed line indicates an analytical ap-
proximation defined by q̇analytic ≡ 2×1010 t−1.3 (in units
of erg g−1 s−1; t is time in day, e.g., Metzger et al. 2010).
Lower panels show the heating rates relative to q̇analytic.
Overall, each curve reasonably follows q̇analytic by ∼

1 day. After this time, the heating is dominated by
a few radioactivities and becomes highly dependent on
Ye. Contributions from the ejecta of Ye > 0.3 are gen-
erally unimportant after ∼ 1 day. We find that the
heating for Ye = 0.34 turns to be significant after a few
10 days because of the β-decays from 85Kr (half-life of
T1/2 = 10.8 yr; see Figure 4 for its large abundance),
89Sr (T1/2 = 50.5 d), and 103Ru (T1/2 = 39.2 d). Heating
rates for Ye = 0.19 and 0.24, whose abundances are dom-
inated by the second peak nuclei, are found to be in good
agreement with q̇solar−r. This is due to a predominance of
β-decay heating from the second peak abundances, e.g.,
123Sn (T1/2 = 129 d) and 125Sn (T1/2 = 9.64 d) around
a few 10 days.
Our result shows that the heating rate for the low-

est Ye ( = 0.09) is the greatest after 1 day with a few
times larger values than those in previous works (with
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only, is a consequence of the wide Ye distribution pre-
dicted from our full-GR, neutrino transport simulation.
Note also that fission plays a subdominant role for the
final nucleosynthetic abundances. The second (A ∼ 130)
and rare-earth-element (A ∼ 160) peak abundances are
dominated by direct production from the trajectories of
Ye ∼ 0.2. Our result reasonably reproduces the solar-like
abundance ratio between the second (A ∼ 130) and third
(A ∼ 195) peaks as well, which is difficult to explain by
fission recycling.
Given that the model is representative of NS-NS merg-

ers, our result gives an important implication; the dy-
namical ejecta of NS-NS mergers can be the dominant
origin of all the Galactic r-process nuclei. Other con-
tributions from, e.g., the BH-torus wind after collapse of
HMNSs, as invoked in the previous studies to account for
the (solar-like) r-process universality, may not be needed.
The amount of entirely r-processed ejectaMej ≈ 0.01M⊙

with present estimates of the Galactic event rate (a few
10−5 yr−1, e.g., Dominik et al. 2012) is also compatible
with the mass of the Galactic r-process abundances as
also discussed in previous studies (Korobkin et al. 2012;
Bauswein et al. 2013).

4. RADIOACTIVE HEATING

The r-processing ends a few 100 ms after the merging.
The subsequent abundance changes by β-decay, fission,
and α-decay are followed up to t = 100 days; the re-
sulting radioactive heating is relevant for kilonova emis-
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sion. Figure 5 displays the temporal evolutions of the
heating rates for selected trajectories (top-left) and those
mass-averaged (top-right). For comparison purposes, the
heating rate for the nuclear abundances with the solar r-
process pattern (for A ≥ 90, q̇solar−r; same as that used in
Hotokezaka et al. 2013a; Tanaka et al. 2014), β-decaying
back from the neutron-rich region, is also shown in each
panel. The short-dashed line indicates an analytical ap-
proximation defined by q̇analytic ≡ 2×1010 t−1.3 (in units
of erg g−1 s−1; t is time in day, e.g., Metzger et al. 2010).
Lower panels show the heating rates relative to q̇analytic.
Overall, each curve reasonably follows q̇analytic by ∼

1 day. After this time, the heating is dominated by
a few radioactivities and becomes highly dependent on
Ye. Contributions from the ejecta of Ye > 0.3 are gen-
erally unimportant after ∼ 1 day. We find that the
heating for Ye = 0.34 turns to be significant after a few
10 days because of the β-decays from 85Kr (half-life of
T1/2 = 10.8 yr; see Figure 4 for its large abundance),
89Sr (T1/2 = 50.5 d), and 103Ru (T1/2 = 39.2 d). Heating
rates for Ye = 0.19 and 0.24, whose abundances are dom-
inated by the second peak nuclei, are found to be in good
agreement with q̇solar−r. This is due to a predominance of
β-decay heating from the second peak abundances, e.g.,
123Sn (T1/2 = 129 d) and 125Sn (T1/2 = 9.64 d) around
a few 10 days.
Our result shows that the heating rate for the low-

est Ye ( = 0.09) is the greatest after 1 day with a few
times larger values than those in previous works (with
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Fig. 2.— Neutron star mass-radius curve for modern supernova
equations of state. The red (green) region outlines the one (two)
σ confidence limits from Steiner et al. (2010).

tion of light and heavy nuclei within the gas of unbound
nucleons. For the unbound nucleons, we utilize the SFHo
and SFHx relativistic mean-field interactions. At low
densities, the description of nuclei is based on measured
experimental binding energies (Audi et al. 2003), which
are combined with theoretical nuclear structure calcu-
lations for exotic nuclei without measured data. Here
the finite range droplet model of Möller et al. (1995) was
chosen because of its excellent reproduction of experi-
mental binding energies, with a rms deviation of only
0.669 MeV. Due to the use of nuclear structure data,
shell effects are automatically included. HS goes beyond
the single nucleus approximation and utilizes a distribu-
tion of different nuclear species, and the results for light
nuclei are in agreement with more sophisticated quan-
tum many-body models (Hempel et al. 2011). Also, the
recent experimental study of Qin et al. (2012) indicates
that the HS model is well suited for the description of
matter at finite temperature and densities around a few
tenths of saturation density. At even larger densities in
the HS model the disappearance of nuclei and smooth
transition to uniform nuclear matter is assured by an
excluded volume description. Finally we calculate the
EOS in tabular form, covering densities from 10−12 to 10
fm−3, temperatures from 0.1 to 160 MeV, and electron
fractions from 0 to 0.6, including detailed information
about the nuclear composition and the thermodynamic
properties. The tables are suitable for use in astrophysi-
cal simulations and are available online.1

The resulting EOS will be compared below with the
LS EOS, with the different compressibilities 180 MeV
(LS180), 220 MeV (LS220), and 375 MeV (LS375), and
with STOS. Moreover, we will also include into our com-
parison results obtained using the quark-hadron hybrid
EOS from Fischer et al. (2011). We select the model with

1 See http://phys-merger.physik.unibas.ch/~hempel/eos.html.

bag constant B1/4 = 155 MeV and including corrections
from the strong coupling constant, αS = 0.3 (hereafter
QB155αS03), where the phase transition to quark mat-
ter takes place at nuclear saturation density for temper-
atures around 10 MeV and Ye ≃ 0.3 (for details, see
Fischer et al. 2011). The hadronic part of this EOS ta-
ble is based on the STOS EOS, and these two EOS are
identical at sub-saturation densities where quarks are not
present.

3. CORE-COLLAPE SUPERNOVA SIMULATIONS

In this section, we will compare results from SN sim-
ulations obtained using the SFHo EOS with the stan-
dard EOS LS180 and the two TM1 RMF parameteriza-
tions STOS and HS. Furthermore, we will also compare
SFHo with the hybrid EOS QB155αS03, for which ex-
plosions were obtained recently even in spherically sym-
metric simulations (Fischer et al. 2011).

TABLE 4
Neutrino reactions considered including references.

Reactiona References
νe + n → p + e− Bruenn (1985)
ν̄e + p → n+ e+ Bruenn (1985)

νe + (A,Z − 1) → (A,Z) + e− Langanke et al. (2003),
Hix et al. (2003)

ν +N → ν′ +N Bruenn (1985)
ν + (A,Z) → ν′ + (A,Z) Bruenn (1985)

ν + e± → ν′ + e± Bruenn (1985),
Mezzacappa & Bruenn (1993a),
Mezzacappa & Bruenn (1993b)

ν + ν̄ → e− + e+ Bruenn (1985)
Mezzacappa & Messer (1999)

ν + ν̄ +N +N → N +N Hannestad & Raffelt (1998)
νe + ν̄e → νµ/τ + ν̄µ/τ Buras et al. (2003)

aNote: ν = {νe, ν̄e, νµ/τ , ν̄µ/τ} and N = {n, p}

3.1. Supernova model

Our core-collapse SN model, AGILE-BOLTZTRAN,
is based on general relativistic radiation hydrodynam-
ics in spherical symmetry. It employs three-flavor Boltz-
mann neutrino transport (see Liebendoerfer et al. 2004,
and references therein). We use the standard weak pro-
cesses following Bruenn (1985), see Table 4 for details.
In addition, we include the improved rates for electron-
captures on heavy nuclei from Langanke et al. (2003)
and Hix et al. (2003), weak magnetism and nucleon re-
coil based on Horowitz (2002), and the annihilation of
trapped electron neutrino pairs has been implemented in
Fischer et al. (2009) following Buras et al. (2003).
For NSE conditions (T > 0.45 MeV), we implement

the baryon EOS tables specified above. For non-NSE,
we assume the ideal gas of 28Si for the baryon EOS. On
top of the baryons, also for NSE, contributions from elec-
trons, positrons and photons are added to the EOS using
Timmes & Arnett (1999). Recently, this Si-gas approxi-
mation has been replaced by a nuclear reaction network,
based on the nuclear composition given by the progeni-
tor model. It allows, e.g., for a smooth NSE-to-non-NSE
transition as well as to simulate a large domain of the
progenitor star (for details, see Fischer et al. 2010).
The simulations we will discuss further below are

launched from iron-core progenitors. We use the

EoS for Supernova & Mergers Simulations
New class of nuclear EoSs developed for 
simulations. Constrained by!
• L & S measurements!
• Neutron star radii !
• Ab initio neutron matter calculations !
• Virial expansion of low density hot matter!
• Low energy heavy-ion reactions     

Include a range of behavior of the symmetry energy.   Steiner, Hempel, Fischer (2014)
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FIG. 3: The top panel shows the total absorption inverse
mean free path as a function of incoming neutrino energy
for electron neutrinos (solid lines) and electron antineutri-
nos (dashed lines). The dot-dashed line shows the effective
bremsstrahlung inverse mean free path. In both panels the
black lines include mean field effects and the red lines assume
a free gas response function. The bottom panel shows the
ratio of the total electron neutrino capture rate to the total
electron antineutrino capture rate. Beta-equilibrium has been
assumed and the temperature has been fixed at 8 MeV.

approximation for electron antineutrino destruction. For
electron antineutrinos at low energies, bremsstrahlung
dominates the capture rate. Mean field effects push
the energy region were bremsstrahlung is dominant to
larger neutrino energies. This suggests that varying the
assumed bremsstrahlung rate will also affect the spec-
trum of the electron antineutrinos. In the bottom panel,
the ratio of the electron antineutrino mean free path to
the electron neutrino mean free path is shown as a func-
tion of energy with and without the affect of mean fields.
The large asymmetry induced between electron neutrino
and antineutrino charged current interactions when mean
fields are properly included is plainly visible.
The formalism of [1] includes this effect, and was used

to calculate the neutrino interaction rates employed in
the models presented in [11] and in section III of this
work. However, the formulae in [26] and [3] for charged
current rates neglect the potential energy difference in
the nucleon kinematics. In [3], a procedure is advocated
for including mean fields in which the effective chemi-
cal potential, µ̃i of each species is calculated from the

given number density and temperature by inverting the
free Fermi gas relation, then the response is assumed to
be the free gas response but with the effective chemi-
cal potentials in place of the actual chemical potentials.
This prescription is incorrect because while it accounts
for the location of the Fermi surface of the nucleons it fails
to account for the presence of a potential energy differ-
ence between incoming and outgoing nucleon states. This
amounts to assuming µ → µ̃, so that in Eq. 4 q̃0 → q0
and the response becomes the non-interacting response
for the given density and electron fraction. When the
potential energies of the incoming and outgoing nucleons
states are equal, as in symmetric matter, or for neutral
current reactions this prescription results in the correct
expression, but in asymmetric matter and for charged
current reactions it is in error. To obtain the correct
expression for the mean field polarization function from
the free gas results of [3] it is necessary to make both
replacements given in Eq. 16.

C. Correlations and Collisional Broadening

In addition to the mean field energy shift, interactions
correlate and scatter nucleons in the medium. The ex-
citation of two or more nucleons by processes such as
νe+n+n → n+p+ e− and νe+n+p → p+p+ e− alter
the kinematics of the charged current reaction. Typically,
these two-particle reactions introduce modest corrections
to the single-particle response when the quasi-particle
life-time is large. However, they can dominate when: (i)
energy-momentum requirements are not fulfilled by the
single particle reaction; (ii) final state Pauli blocking re-
quires large energy and momentum transfer; (iii) or both.
Such circumstances are encountered in neutron star cool-
ing, where the reaction n → e− + p+ ν̄e is kinematically
forbidden at the Fermi surface under extreme degeneracy
unless the proton fractions xp ! 10% [27, 28]. Instead,
the two-particle reaction n + n → e− + p + ν̄e, called
the modified URCA reaction, is the main source of neu-
trino production [29]. At temperatures encountered in
PNS cooling, energy-momentum restrictions do not for-
bid the single-particle interactions, but they do strongly
frustrate them due to final state blocking.

The excitation of two particle states in neutral cur-
rent reactions has been included in a unified approach
described in [7] and incorporated into the total response
function by introducing a finite quasi-particle lifetime τ .
This naturally leads to collisional broadening allowing
the response to access multi-particle kinematics and al-
ters both the overall shape and magnitude of the response
function [5, 7]. Here, as a first step, we adapt the gen-
eral structure of the response function from [7] to show
that two-particle excitations play an important role in the
charged current process. We include a finite τ through
the following ansatz for the imaginary part of the polar-

Roberts, Reddy, Shen (2012)
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consisting of all possible bound states in chemical equilib-
rium (mass action law). This chemical picture is confined
to the low-density region (below 5⇥10�4 fm�3) where the
interaction between the constituents can be neglected.

Many theoretical investigations have been performed
to estimate the behavior of the symmetry energy as a
function of n and T (Li et al. [1], see also [18,19]). Typ-
ically, quasi-particle approaches such as Skyrme Hartree-
Fock and relativistic mean field (RMF) models or Dirac-
Brueckner Hartree-Fock calculations are used. The uni-
form matter symmetry energy obtained in this approx-
imation goes linearly to zero when the density goes to
zero,

E
sym

(n, T ) / n. (13)

Such a behavior is often seen in the results shown in the
literature, but is incorrect because correlations are not
included.

At low density the symmetry energy changes mainly
because additional binding is gained in symmetric mat-
ter due to formation of clusters and pasta structures [20].
Therefore, the symmetry energy in the low-temperature
limit has to be equal to the binding energy per nucleon
associated with the strong interaction of the most bound
nuclear cluster. Theoretical calculations of the density de-
pendence of the symmetry energy based on conventional
mean-field approaches and ignoring cluster formation will
fail to give the correct low-temperature, low-density limit
to the symmetry energy. The correct low-density limit
can be recovered only if the formation of clusters is prop-
erly taken into account, as has previously been shown in
Ref. [21], see also [12,22] in the context of a virial expan-
sion valid at very low densities, and in Ref. [16].

Approaches used to account for cluster formation in-
clude the nuclear statistical equilibrium model (NSE) [23],
cluster-virial expansions [12], as well as generalized Beth-
Uhlenbeck approaches [22]. A thermodynamic Green’s func-
tion approach that allows a generalization of the NSE
model by introducing a quasiparticle description also for
the bound states was already formulated some decades
ago [21], but only recently analyzed with respect to the
experimental consequences for nuclear matter [24].

To deal with the clusterization, we employ a quantum
statistical (QS) approach which takes into account cluster
correlations in the medium. To extend the range of ap-
plicability of this approach, we then interpolate between
the exact low-density limit and the very successful RMF
approaches near the saturation density to provide a rep-
resentation useful over a wide range of densities.

In this QS approach cluster correlations are described
in a generalized Beth-Uhlenbeck expansion. The advan-
tage of this method is that the medium modifications of
the clusters at finite density are taken into account. In
Ref. [16] the thermodynamic properties of nuclear mat-
ter were derived using this approach. The formulation of
Ref. [16] is valid in the density and temperature range
where the formation of light clusters withA  4 dominates
and heavier clusters are not yet important. The method
requires a reasonably accurate modeling of the quasipar-
ticle properties. For that we employ a RMF model with

Shift of Binding Energies of Light Clusters 

G.R., PRC 79, 014002 (2009) 
S. Typel et al.,  
PRC 81, 015803 (2010)           

G.R., NP A 867, 66 (2011)  
 

Symmetric matter 

Fig. 2. Change of the binding energy Bi = �E

0
i of the clus-

ters i = d, t, h,↵ at rest in symmetric nuclear matter due to
the binding energy shift Bi as used in the generalized RMF
model as a function of the total nucleon density n. Mott points
for specific temperature-density combinations appear when the
binding energy relative to the medium becomes = 0.

density dependent couplings [25] which gives a good de-
scription both of nuclear matter around normal density
and of ground state properties of nuclei across the nuclear
chart. In order to extend the applicability of this RMF
model to very low densities, it has been generalized in
Ref. [16] to account also for cluster formation and destruc-
tion. The model allows derivation of the composition and
the thermodynamic quantities of nuclear matter can be
modeled in a large region of densities, temperatures and
asymmetries that are required, for example, in supernova
simulations.

This generalized model naturally leads to a decrease of
the cluster mass fractions at high densities, reflecting a re-
duction of the cluster binding energies due to Pauli block-
ing. The binding energy of a cluster relative to the medium
vanishes at a point known as the Mott point. As a result,
well-defined clusters appear for densities below approxi-
mately 1/10 of the saturation density and get dissolved at
higher densities. (Because of the presence of strong cor-
relations in the scattering state continuum that are e↵ec-
tively represented by one resonance, there is a diminishing
but non vanishing cluster fraction above the Mott den-
sity.) The Mott point is temperature dependent as seen in
Figure 2 where calculated Mott points for d, t,3He and ↵
particles are represented [16].
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tures of mesoscopic nuclear systems, within the framework
of the Guggenheim systematics, in a manner analogous to
previous treatments [75,79].

4.3 Test of the nuclear matter EOS at low densities

With our confidence in the temperature and density deter-
minations bolstered by the consistency exhibited in Fig. 5,
we have addressed various aspects of clustering in the low
density nuclear matter produced. In theoretical models
cluster mass fractions are commonly used to characterize
the degree of clusterization in low density matter. How-
ever, di↵erent theoretical models include various di↵erent
competing species. This leads to di↵erences in particu-
lar mass fractions quoted. If all relevant species are not
included in the calculation, mass fractions cannot be ac-
curately determined. To avoid this problem we have pro-
posed that equilibrium constants for cluster formation be
employed instead of mass fractions. In contrast to mass
fractions, cluster formation equilibrium constants, such as
that for ↵ particle formation, i.e.,

Kc(↵) =
n↵

n2

nn
2

p

(39)

where n↵, nn, and np are the ↵ particle, neutron and
proton densities, respectively, should be independent of
proton fraction and choice of competing species.

Figure 6 from reference [39] depicts a comparison be-
tween our experimentally derived equilibrium constants
and those resulting from models employing a variety of
equations of state proposed for astrophysical applications
[8,9,10,11,16].

Not surprisingly the calculated values of the equilib-
rium constant tend to converge at the lower densities.
Even at the lowest densities sampled, however, there are
significant di↵erences. At higher densities, 0.01 to 0.03
nuc/fm3, the various interactions employed all lead to a
decrease of Kc below that of the Nuclear Statistical Equi-
librium (NSE) values of Typel et al. [16], as expected.
However most of them lead to higher values of Kc(↵) than
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d, t,3He and ↵ clusters from the data [80]. Since the ob-
served temperatures and densities are correlated in our
experiment the point at which an experimentally derived
cluster binding energy is zero with respect to the sur-
rounding medium corresponds to a particular combination
of density and temperature. Thus, for our data, on clus-
ters produced in collisions of 47 A MeV 40Ar and 64Zn
projectiles with 112Sn and 124Sn target nuclei we are able
to extract a single Mott point for each cluster. In Fig-
ure 7 we present the values of the Mott temperatures and
densities and compare them with the loci of the values of
medium modified binding energies predicted by the ther-
modynamic Green’s function method [24,32], see Typel et
al. [16]. This approach makes explicit use of an e↵ective
nucleon-nucleon interaction to account for medium e↵ects
on the cluster properties. We see that the agreement be-
tween the predictions and the experimental results is quite
good.
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tures of mesoscopic nuclear systems, within the framework
of the Guggenheim systematics, in a manner analogous to
previous treatments [75,79].

4.3 Test of the nuclear matter EOS at low densities

With our confidence in the temperature and density deter-
minations bolstered by the consistency exhibited in Fig. 5,
we have addressed various aspects of clustering in the low
density nuclear matter produced. In theoretical models
cluster mass fractions are commonly used to characterize
the degree of clusterization in low density matter. How-
ever, di↵erent theoretical models include various di↵erent
competing species. This leads to di↵erences in particu-
lar mass fractions quoted. If all relevant species are not
included in the calculation, mass fractions cannot be ac-
curately determined. To avoid this problem we have pro-
posed that equilibrium constants for cluster formation be
employed instead of mass fractions. In contrast to mass
fractions, cluster formation equilibrium constants, such as
that for ↵ particle formation, i.e.,

Kc(↵) =
n↵

n2

nn
2

p

(39)

where n↵, nn, and np are the ↵ particle, neutron and
proton densities, respectively, should be independent of
proton fraction and choice of competing species.

Figure 6 from reference [39] depicts a comparison be-
tween our experimentally derived equilibrium constants
and those resulting from models employing a variety of
equations of state proposed for astrophysical applications
[8,9,10,11,16].

Not surprisingly the calculated values of the equilib-
rium constant tend to converge at the lower densities.
Even at the lowest densities sampled, however, there are
significant di↵erences. At higher densities, 0.01 to 0.03
nuc/fm3, the various interactions employed all lead to a
decrease of Kc below that of the Nuclear Statistical Equi-
librium (NSE) values of Typel et al. [16], as expected.
However most of them lead to higher values of Kc(↵) than
those derived from the experiment. The Lattimer-Swesty
model [8] using Skyrme models with incompressibilities
of 180 and 220 MeV and employing an excluded volume
technique predict values slightly higher than the experi-
mental values. This is also true for the Statistical Equi-
librium model of Hempel and Scha↵ner-Bielich using an
NL-3 interaction and also employing an excluded volume
technique [11]. The Quantum Statistical Model of Röpke
et al., which includes the medium modifications of the
cluster binding energies leads to values close to the exper-
imental values [24,32]. The data provide important new
constraints on the model calculations.

4.4 Shift of the binding energies and Mott points

Using the equilibrium constants it is possible to derive
temperature and density dependent binding energies of
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Fig. 6. Comparison of experimental values of Kc(↵) with
those from various EOS calculations [39].

d, t,3He and ↵ clusters from the data [80]. Since the ob-
served temperatures and densities are correlated in our
experiment the point at which an experimentally derived
cluster binding energy is zero with respect to the sur-
rounding medium corresponds to a particular combination
of density and temperature. Thus, for our data, on clus-
ters produced in collisions of 47 A MeV 40Ar and 64Zn
projectiles with 112Sn and 124Sn target nuclei we are able
to extract a single Mott point for each cluster. In Fig-
ure 7 we present the values of the Mott temperatures and
densities and compare them with the loci of the values of
medium modified binding energies predicted by the ther-
modynamic Green’s function method [24,32], see Typel et
al. [16]. This approach makes explicit use of an e↵ective
nucleon-nucleon interaction to account for medium e↵ects
on the cluster properties. We see that the agreement be-
tween the predictions and the experimental results is quite
good.
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consisting of all possible bound states in chemical equilib-
rium (mass action law). This chemical picture is confined
to the low-density region (below 5⇥10�4 fm�3) where the
interaction between the constituents can be neglected.

Many theoretical investigations have been performed
to estimate the behavior of the symmetry energy as a
function of n and T (Li et al. [1], see also [18,19]). Typ-
ically, quasi-particle approaches such as Skyrme Hartree-
Fock and relativistic mean field (RMF) models or Dirac-
Brueckner Hartree-Fock calculations are used. The uni-
form matter symmetry energy obtained in this approx-
imation goes linearly to zero when the density goes to
zero,

E
sym

(n, T ) / n. (13)

Such a behavior is often seen in the results shown in the
literature, but is incorrect because correlations are not
included.

At low density the symmetry energy changes mainly
because additional binding is gained in symmetric mat-
ter due to formation of clusters and pasta structures [20].
Therefore, the symmetry energy in the low-temperature
limit has to be equal to the binding energy per nucleon
associated with the strong interaction of the most bound
nuclear cluster. Theoretical calculations of the density de-
pendence of the symmetry energy based on conventional
mean-field approaches and ignoring cluster formation will
fail to give the correct low-temperature, low-density limit
to the symmetry energy. The correct low-density limit
can be recovered only if the formation of clusters is prop-
erly taken into account, as has previously been shown in
Ref. [21], see also [12,22] in the context of a virial expan-
sion valid at very low densities, and in Ref. [16].

Approaches used to account for cluster formation in-
clude the nuclear statistical equilibrium model (NSE) [23],
cluster-virial expansions [12], as well as generalized Beth-
Uhlenbeck approaches [22]. A thermodynamic Green’s func-
tion approach that allows a generalization of the NSE
model by introducing a quasiparticle description also for
the bound states was already formulated some decades
ago [21], but only recently analyzed with respect to the
experimental consequences for nuclear matter [24].

To deal with the clusterization, we employ a quantum
statistical (QS) approach which takes into account cluster
correlations in the medium. To extend the range of ap-
plicability of this approach, we then interpolate between
the exact low-density limit and the very successful RMF
approaches near the saturation density to provide a rep-
resentation useful over a wide range of densities.

In this QS approach cluster correlations are described
in a generalized Beth-Uhlenbeck expansion. The advan-
tage of this method is that the medium modifications of
the clusters at finite density are taken into account. In
Ref. [16] the thermodynamic properties of nuclear mat-
ter were derived using this approach. The formulation of
Ref. [16] is valid in the density and temperature range
where the formation of light clusters withA  4 dominates
and heavier clusters are not yet important. The method
requires a reasonably accurate modeling of the quasipar-
ticle properties. For that we employ a RMF model with

Shift of Binding Energies of Light Clusters 
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Fig. 2. Change of the binding energy Bi = �E

0
i of the clus-

ters i = d, t, h,↵ at rest in symmetric nuclear matter due to
the binding energy shift Bi as used in the generalized RMF
model as a function of the total nucleon density n. Mott points
for specific temperature-density combinations appear when the
binding energy relative to the medium becomes = 0.

density dependent couplings [25] which gives a good de-
scription both of nuclear matter around normal density
and of ground state properties of nuclei across the nuclear
chart. In order to extend the applicability of this RMF
model to very low densities, it has been generalized in
Ref. [16] to account also for cluster formation and destruc-
tion. The model allows derivation of the composition and
the thermodynamic quantities of nuclear matter can be
modeled in a large region of densities, temperatures and
asymmetries that are required, for example, in supernova
simulations.

This generalized model naturally leads to a decrease of
the cluster mass fractions at high densities, reflecting a re-
duction of the cluster binding energies due to Pauli block-
ing. The binding energy of a cluster relative to the medium
vanishes at a point known as the Mott point. As a result,
well-defined clusters appear for densities below approxi-
mately 1/10 of the saturation density and get dissolved at
higher densities. (Because of the presence of strong cor-
relations in the scattering state continuum that are e↵ec-
tively represented by one resonance, there is a diminishing
but non vanishing cluster fraction above the Mott den-
sity.) The Mott point is temperature dependent as seen in
Figure 2 where calculated Mott points for d, t,3He and ↵
particles are represented [16].
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clude the nuclear statistical equilibrium model (NSE) [23],
cluster-virial expansions [12], as well as generalized Beth-
Uhlenbeck approaches [22]. A thermodynamic Green’s func-
tion approach that allows a generalization of the NSE
model by introducing a quasiparticle description also for
the bound states was already formulated some decades
ago [21], but only recently analyzed with respect to the
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statistical (QS) approach which takes into account cluster
correlations in the medium. To extend the range of ap-
plicability of this approach, we then interpolate between
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density dependent couplings [25] which gives a good de-
scription both of nuclear matter around normal density
and of ground state properties of nuclei across the nuclear
chart. In order to extend the applicability of this RMF
model to very low densities, it has been generalized in
Ref. [16] to account also for cluster formation and destruc-
tion. The model allows derivation of the composition and
the thermodynamic quantities of nuclear matter can be
modeled in a large region of densities, temperatures and
asymmetries that are required, for example, in supernova
simulations.

This generalized model naturally leads to a decrease of
the cluster mass fractions at high densities, reflecting a re-
duction of the cluster binding energies due to Pauli block-
ing. The binding energy of a cluster relative to the medium
vanishes at a point known as the Mott point. As a result,
well-defined clusters appear for densities below approxi-
mately 1/10 of the saturation density and get dissolved at
higher densities. (Because of the presence of strong cor-
relations in the scattering state continuum that are e↵ec-
tively represented by one resonance, there is a diminishing
but non vanishing cluster fraction above the Mott den-
sity.) The Mott point is temperature dependent as seen in
Figure 2 where calculated Mott points for d, t,3He and ↵
particles are represented [16].
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tures of mesoscopic nuclear systems, within the framework
of the Guggenheim systematics, in a manner analogous to
previous treatments [75,79].

4.3 Test of the nuclear matter EOS at low densities

With our confidence in the temperature and density deter-
minations bolstered by the consistency exhibited in Fig. 5,
we have addressed various aspects of clustering in the low
density nuclear matter produced. In theoretical models
cluster mass fractions are commonly used to characterize
the degree of clusterization in low density matter. How-
ever, di↵erent theoretical models include various di↵erent
competing species. This leads to di↵erences in particu-
lar mass fractions quoted. If all relevant species are not
included in the calculation, mass fractions cannot be ac-
curately determined. To avoid this problem we have pro-
posed that equilibrium constants for cluster formation be
employed instead of mass fractions. In contrast to mass
fractions, cluster formation equilibrium constants, such as
that for ↵ particle formation, i.e.,

Kc(↵) =
n↵

n2

nn
2

p

(39)

where n↵, nn, and np are the ↵ particle, neutron and
proton densities, respectively, should be independent of
proton fraction and choice of competing species.

Figure 6 from reference [39] depicts a comparison be-
tween our experimentally derived equilibrium constants
and those resulting from models employing a variety of
equations of state proposed for astrophysical applications
[8,9,10,11,16].

Not surprisingly the calculated values of the equilib-
rium constant tend to converge at the lower densities.
Even at the lowest densities sampled, however, there are
significant di↵erences. At higher densities, 0.01 to 0.03
nuc/fm3, the various interactions employed all lead to a
decrease of Kc below that of the Nuclear Statistical Equi-
librium (NSE) values of Typel et al. [16], as expected.
However most of them lead to higher values of Kc(↵) than
those derived from the experiment. The Lattimer-Swesty
model [8] using Skyrme models with incompressibilities
of 180 and 220 MeV and employing an excluded volume
technique predict values slightly higher than the experi-
mental values. This is also true for the Statistical Equi-
librium model of Hempel and Scha↵ner-Bielich using an
NL-3 interaction and also employing an excluded volume
technique [11]. The Quantum Statistical Model of Röpke
et al., which includes the medium modifications of the
cluster binding energies leads to values close to the exper-
imental values [24,32]. The data provide important new
constraints on the model calculations.

4.4 Shift of the binding energies and Mott points

Using the equilibrium constants it is possible to derive
temperature and density dependent binding energies of
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Fig. 6. Comparison of experimental values of Kc(↵) with
those from various EOS calculations [39].

d, t,3He and ↵ clusters from the data [80]. Since the ob-
served temperatures and densities are correlated in our
experiment the point at which an experimentally derived
cluster binding energy is zero with respect to the sur-
rounding medium corresponds to a particular combination
of density and temperature. Thus, for our data, on clus-
ters produced in collisions of 47 A MeV 40Ar and 64Zn
projectiles with 112Sn and 124Sn target nuclei we are able
to extract a single Mott point for each cluster. In Fig-
ure 7 we present the values of the Mott temperatures and
densities and compare them with the loci of the values of
medium modified binding energies predicted by the ther-
modynamic Green’s function method [24,32], see Typel et
al. [16]. This approach makes explicit use of an e↵ective
nucleon-nucleon interaction to account for medium e↵ects
on the cluster properties. We see that the agreement be-
tween the predictions and the experimental results is quite
good.

16 K. Hagel et al.: The equation of state and symmetry energy of low density nuclear matter

20. G. Watanabe, et al., Phys. Rev. Lett. 103, 121101 (2009).
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22. M. Schmidt, G. Röpke, and H. Schulz, Ann. Phys. (N.Y.)

202, 57 (1990).
23. J. P. Bondorf, et al., Phys. Rept. 257, 133 (1995).
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77. G. Röpke et al., Phys. Rev. C 88, 024609 (2013).
78. S. Shlomo et al., Phys. Rev. C 79, 034604 (2009).
79. J. B. Elliott et al., Phys. Rev. C 67, 024609 (2003); J. B.

Elliott et al., arXiv:1203.5132 submitted to Phys. Rev. C
(2013).

80. K. Hagel et al., Phys. Rev. Lett. 108, 062702 (2012).
81. M. B. Tsang et al., Phys. Rev. Lett. 86, 5023 (2001).
82. M. B. Tsang et al., Phys. Rev.C 64, 041603 (2001).
83. S. R. Souza et al., Phys. Rev. C 78, 014605 (2008).
84. L. W. Chen et al., Phys. Rev. Lett. 94, 032701 (2005);

Phys. Rev. C 76, 054316 (2007).
85. P. Danielewicz and J. Lee, arXiv:1307.4130 [nucl-th]

Experimental Tests

12 K. Hagel et al.: The equation of state and symmetry energy of low density nuclear matter

tures of mesoscopic nuclear systems, within the framework
of the Guggenheim systematics, in a manner analogous to
previous treatments [75,79].

4.3 Test of the nuclear matter EOS at low densities

With our confidence in the temperature and density deter-
minations bolstered by the consistency exhibited in Fig. 5,
we have addressed various aspects of clustering in the low
density nuclear matter produced. In theoretical models
cluster mass fractions are commonly used to characterize
the degree of clusterization in low density matter. How-
ever, di↵erent theoretical models include various di↵erent
competing species. This leads to di↵erences in particu-
lar mass fractions quoted. If all relevant species are not
included in the calculation, mass fractions cannot be ac-
curately determined. To avoid this problem we have pro-
posed that equilibrium constants for cluster formation be
employed instead of mass fractions. In contrast to mass
fractions, cluster formation equilibrium constants, such as
that for ↵ particle formation, i.e.,

Kc(↵) =
n↵

n2

nn
2

p

(39)

where n↵, nn, and np are the ↵ particle, neutron and
proton densities, respectively, should be independent of
proton fraction and choice of competing species.

Figure 6 from reference [39] depicts a comparison be-
tween our experimentally derived equilibrium constants
and those resulting from models employing a variety of
equations of state proposed for astrophysical applications
[8,9,10,11,16].

Not surprisingly the calculated values of the equilib-
rium constant tend to converge at the lower densities.
Even at the lowest densities sampled, however, there are
significant di↵erences. At higher densities, 0.01 to 0.03
nuc/fm3, the various interactions employed all lead to a
decrease of Kc below that of the Nuclear Statistical Equi-
librium (NSE) values of Typel et al. [16], as expected.
However most of them lead to higher values of Kc(↵) than
those derived from the experiment. The Lattimer-Swesty
model [8] using Skyrme models with incompressibilities
of 180 and 220 MeV and employing an excluded volume
technique predict values slightly higher than the experi-
mental values. This is also true for the Statistical Equi-
librium model of Hempel and Scha↵ner-Bielich using an
NL-3 interaction and also employing an excluded volume
technique [11]. The Quantum Statistical Model of Röpke
et al., which includes the medium modifications of the
cluster binding energies leads to values close to the exper-
imental values [24,32]. The data provide important new
constraints on the model calculations.

4.4 Shift of the binding energies and Mott points

Using the equilibrium constants it is possible to derive
temperature and density dependent binding energies of

3, nuc/fmρ
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Fig. 6. Comparison of experimental values of Kc(↵) with
those from various EOS calculations [39].

d, t,3He and ↵ clusters from the data [80]. Since the ob-
served temperatures and densities are correlated in our
experiment the point at which an experimentally derived
cluster binding energy is zero with respect to the sur-
rounding medium corresponds to a particular combination
of density and temperature. Thus, for our data, on clus-
ters produced in collisions of 47 A MeV 40Ar and 64Zn
projectiles with 112Sn and 124Sn target nuclei we are able
to extract a single Mott point for each cluster. In Fig-
ure 7 we present the values of the Mott temperatures and
densities and compare them with the loci of the values of
medium modified binding energies predicted by the ther-
modynamic Green’s function method [24,32], see Typel et
al. [16]. This approach makes explicit use of an e↵ective
nucleon-nucleon interaction to account for medium e↵ects
on the cluster properties. We see that the agreement be-
tween the predictions and the experimental results is quite
good.

Can we reliably predict and 
measure the reduced 
effective nuclear binding ? 

T(ρ) from Expt.
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consisting of all possible bound states in chemical equilib-
rium (mass action law). This chemical picture is confined
to the low-density region (below 5⇥10�4 fm�3) where the
interaction between the constituents can be neglected.

Many theoretical investigations have been performed
to estimate the behavior of the symmetry energy as a
function of n and T (Li et al. [1], see also [18,19]). Typ-
ically, quasi-particle approaches such as Skyrme Hartree-
Fock and relativistic mean field (RMF) models or Dirac-
Brueckner Hartree-Fock calculations are used. The uni-
form matter symmetry energy obtained in this approx-
imation goes linearly to zero when the density goes to
zero,

E
sym

(n, T ) / n. (13)

Such a behavior is often seen in the results shown in the
literature, but is incorrect because correlations are not
included.

At low density the symmetry energy changes mainly
because additional binding is gained in symmetric mat-
ter due to formation of clusters and pasta structures [20].
Therefore, the symmetry energy in the low-temperature
limit has to be equal to the binding energy per nucleon
associated with the strong interaction of the most bound
nuclear cluster. Theoretical calculations of the density de-
pendence of the symmetry energy based on conventional
mean-field approaches and ignoring cluster formation will
fail to give the correct low-temperature, low-density limit
to the symmetry energy. The correct low-density limit
can be recovered only if the formation of clusters is prop-
erly taken into account, as has previously been shown in
Ref. [21], see also [12,22] in the context of a virial expan-
sion valid at very low densities, and in Ref. [16].

Approaches used to account for cluster formation in-
clude the nuclear statistical equilibrium model (NSE) [23],
cluster-virial expansions [12], as well as generalized Beth-
Uhlenbeck approaches [22]. A thermodynamic Green’s func-
tion approach that allows a generalization of the NSE
model by introducing a quasiparticle description also for
the bound states was already formulated some decades
ago [21], but only recently analyzed with respect to the
experimental consequences for nuclear matter [24].

To deal with the clusterization, we employ a quantum
statistical (QS) approach which takes into account cluster
correlations in the medium. To extend the range of ap-
plicability of this approach, we then interpolate between
the exact low-density limit and the very successful RMF
approaches near the saturation density to provide a rep-
resentation useful over a wide range of densities.

In this QS approach cluster correlations are described
in a generalized Beth-Uhlenbeck expansion. The advan-
tage of this method is that the medium modifications of
the clusters at finite density are taken into account. In
Ref. [16] the thermodynamic properties of nuclear mat-
ter were derived using this approach. The formulation of
Ref. [16] is valid in the density and temperature range
where the formation of light clusters withA  4 dominates
and heavier clusters are not yet important. The method
requires a reasonably accurate modeling of the quasipar-
ticle properties. For that we employ a RMF model with

Shift of Binding Energies of Light Clusters 

G.R., PRC 79, 014002 (2009) 
S. Typel et al.,  
PRC 81, 015803 (2010)           

G.R., NP A 867, 66 (2011)  
 

Symmetric matter 

Fig. 2. Change of the binding energy Bi = �E

0
i of the clus-

ters i = d, t, h,↵ at rest in symmetric nuclear matter due to
the binding energy shift Bi as used in the generalized RMF
model as a function of the total nucleon density n. Mott points
for specific temperature-density combinations appear when the
binding energy relative to the medium becomes = 0.

density dependent couplings [25] which gives a good de-
scription both of nuclear matter around normal density
and of ground state properties of nuclei across the nuclear
chart. In order to extend the applicability of this RMF
model to very low densities, it has been generalized in
Ref. [16] to account also for cluster formation and destruc-
tion. The model allows derivation of the composition and
the thermodynamic quantities of nuclear matter can be
modeled in a large region of densities, temperatures and
asymmetries that are required, for example, in supernova
simulations.

This generalized model naturally leads to a decrease of
the cluster mass fractions at high densities, reflecting a re-
duction of the cluster binding energies due to Pauli block-
ing. The binding energy of a cluster relative to the medium
vanishes at a point known as the Mott point. As a result,
well-defined clusters appear for densities below approxi-
mately 1/10 of the saturation density and get dissolved at
higher densities. (Because of the presence of strong cor-
relations in the scattering state continuum that are e↵ec-
tively represented by one resonance, there is a diminishing
but non vanishing cluster fraction above the Mott den-
sity.) The Mott point is temperature dependent as seen in
Figure 2 where calculated Mott points for d, t,3He and ↵
particles are represented [16].

Typel, Ropke et al. (2010)

Qin et al. (2013) 

Key Issues:!
What is the symmetry energy ? !
How do clusters dissolve ? !
What is the response (to neutrinos)?

Low energy heavy-ion experiments can provide guidance. 

Relevant & Tractable



Towards a Quantitive Theory of Response of Nuclei and 
Nuclear Matter 
• Collective & Multi-pair 

excitations.  
• Exact QMC techniques for 

Euclidean Response and sum-
rules.  

• EFT and two-body currents 
• Response of  hot and dense 

nuclear matter.    

Sonia Bacca
32

LIT with Coupled Cluster Theory

Ahrens  et al.
Ishkanov et al.
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The simple phenomenological fit (dashed line - Eq. (6.2) and the fit to the quasi-particle form (solid line - Eqs.
(5.5) and (6.1)) produce very similar response functions. In addition to the sum-rule constraints, we are forcing the
response to go to zero at low frequency, have a single peak structure, and to fall o↵ fairly rapidly at high-energy as
obtained from the two-neutron response. Combined, these considerations place fairly tight constraints on the spin
response of neutron matter.
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Figure 3: (Color online) The spin response function S�(q = 0,!) of neutron matter at ⇢ = 0.12, 0.16, and 0.20 fm�3 from fits
to AFDMC sum-rules results at zero temperature .

In Figure 3 we compare the response functions obtained over a range of densities ⇢ = 0.12, 0.16 and 0.20 fm�3. As
expected from the sum-rules, the peak of the response functions shifts to larger energy with increasing density. The
tensor and spin-orbit correlations are naturally of shorter range at the higher densities where the mean inter-particle
spacing is shorter, and hence the peak shifts to higher energy. The total strength in the response is fairly flat over
the regime of densities we consider as obtained in the sum-rule calculations for S

0

.
Finally, at higher density the distribution is somewhat broader as !

1

increases more rapidly with density than
!
0

. Both !
0

and !
1

increase rapidly, presumably associated with the increasing importance of the shorter-range
components of the nuclear force at and above saturation density. While we expect this trend to be qualitatively
correct contributions due to three-body forces and from two-body currents are able to play a role in modifying this
behavior.

VII. EXTENSION TO FINITE TEMPERATURE AND IMPACT ON NEUTRINO PRODUCTION

The AFDMC method we employ is restricted to zero temperature and we have not explicitly computed the tem-
perature corrections to the sum-rules. Hence there will be several caveats to consider when using our results in finite
temperature applications such as supernova where S

�

(!) plays a role in neutrino production rates. To discus these
we first note that there are three fundamental energy scales inherent to our present analysis of the structure function
and the neutrino emissivity. They are: (i) typical energy at which the structure function has significant strength and
is given by !̄

0

and !̄
1

; (ii) the energy scale at which the structure function is sampled in the neutrino emissivity and

Spin Response of Neutron Matter

QMC Sum Rules
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FIG. 3: (Color online) Ratio of the spin relaxation rate to the relaxation rate for an excess of quasiparticles in a single
momentum state (1/τσ)/(1/τ ) as a function of Fermi momentum kF for purely tensor scattering amplitudes (in which case
the value is 2), for the one-pion exchange interaction (which gives the value 4/3), from low-momentum interactions Vlow k, and
including second-order many-body contributions.
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FIG. 4: The imaginary part of the spin response function Imχσ/N(0) of Eq. (21) in units of the density of states versus ω/(vFq).
Results are shown for the non-interacting system, without and with mean-field effects, G0 = 0 and G0 = 0.8 respectively, and
for different values of the spin relaxation rate 1/τσ = 0, vFqτσ = 2 and vFqτσ = 5.

range physics in nuclear forces. This deficiency of the OPE model is most prominent at low densities, in comparison
to the increasing Vlow k rate. Similar to the spin response, we find a reduction of C due to second-order many-body
contributions, where the band in Fig. 2 again indicates a range for the effects due to many-body correlations. Finally,
as expected, the relaxation rate obtained from Vlow k plus second-order contributions is now dominated by the central
terms in Eq. (42).

In Fig. 3 we show the ratio (1/τσ)/(1/τ) of the spin relaxation rate to the relaxation rate for an excess of quasi-
particles in a single momentum state as a function of Fermi momentum kF. This is a very useful measure of the
strength of noncentral interactions compared to central ones. For purely tensor scattering amplitudes, the ratio of
the corresponding spin traces in Eqs. (41) and (42) gives (1/τσ)/(1/τ) = 2, while for the OPE interaction, which
has a central part in Eq. (36), this ratio is (1/τσ)/(1/τ) = 4/3, see Eq. (40). While the ratio obtained from Vlow k

Shen et al. (2013)

Fermi Liquid Theory
Lykasov et al. (2008)



Dynamics & the Neutron Star Crust
Key to understanding a host of time dependent phenomena: !
Glitches, Superbursts, Transient Cooling, Magnetic Field Decay, !
Giant Flares. 

nuclei

neutron
superfluid

Neutron Star Crust:

• Transport properties 
(thermal and electrical 
conductivity, viscosity)   !

• Nuclear and neutrino 
reactions  !

• Superfluid properties 
and vortex dynamics  

Recent theoretical 
work sheds light on:



A Microscopic Basis for Crust Models 

• Large scale Hartree-Fock (HF) and 
Time-Dependent HF  !

• Molecular Dynamics at high 
temperatures. !

• Vortex pinning and dynamics. !
• Low energy effective field Theory.    • More(precise(and(efficient(than(sta>c(techniques(((

•  Scales(well(to(leadership(class(compu>ng(
• Directly(simulate(processes(of(interest:(

• Pinning(force(as(a(func>on(of(separa>on(
• Vibra>ons,(Kelvin(waves(
• Crossing(and(reconnec>on(

• Validate(calcula>ons(against(coldNatom(experiments(

Current(Status:(Time5dependent(Algorithms(

 Direct simulations of vortex motion
 Bulgac, Forbes, Sharma (2013)
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Neutron Stars and Supernovae: Microphysics

Mass/Radius relationship

Nuclei (II)

Large scale MD simulations of nuclear pasta formation: 
Nuclear reactions that make a neutron star !

Objectives: !
•  Determine how core of massive star, during 

supernova, transforms from 1055 separate nuclei 
into a single large nucleus --- a newly formed 
neutron star.!

•  Study large-scale shape oscillations associated with 
formation of exotic nuclear pasta phases.!

Impact: !
•  Determine time scales for large-scale 

nuclear shape changes.!
•  Guidance for multifragmentation and 

other heavy-ion reactions. !
•  Determine many transport properties 

important in astrophysics.!

 Accomplishments: !
•  Performed MD simulations 

with � 300,000 nucleons.!
•  Directly determined time 

scales for different nuclear 
pasta shape changes.!

 !
Reference:  A. Schneider 
et al., to be published.!
Contact: C. Horowitz 
horowit@indiana.edu!

!

2014

Monday, July 14, 2014

Crust Dynamics

Gravitational waves and EOS!
Neutron Star Cooling!
Supernovae neutrinos

 Molecular Dynamics of Pasta

 Schneider, Horowitz, Berry (2013) 1012 1013 1014
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FIG. 2: (Color online) Speeds (in units of the speed of light c) of the longitudinal (left panel) and

transverse (right panel) collective excitations in the inner crust of a neutron star. Dotted curves

show results with neither mixing nor entrainment, dashed curves include effects due to entrainment

only and solid curves include in addition the effects due to mixing.

of the crust. In these regions, the two longitudinal modes will merge and give rise to ordinary

sound as discussed at the end of Sec. III. Note, however, that the values for the speeds of

collective excitations indicated in Table II are expected to remain essentially the same for

temperatures T <∼ 1010 K. Indeed, as shown in Ref. [3], thermal effects have a minor impact

on the equilibrium composition of neutron-star crusts in this temperature range. However,

the crust of a real neutron star may not necessarily be in full thermodynamic equilibrium,

as discussed, e.g., in Sec. 3.4 of Ref. [1]. This could affect the spectrum of collective modes.

V. DISSIPATION

Lattice phonons couple strongly to electrons and easily excite electron-hole pairs in the

dense electron gas. This Landau damping of lattice phonons has been studied in Ref. [40]

and an approximate result of the lattice phonon mean free path was obtained. The mean

free path of a thermal phonon that contributes to thermal conductivity was found to be

λlph =
6π

Ze2 γ v̄

1

qD

F (Tp/T )

Λph−e
≃ 72.5

(
40

Z

)2/3 (
F (Tp/T )

v̄ Λph−e

)
rcell , (38)

where

F (Tp/T ) = 0.014 +
0.03

exp (Tp/(5T )) + 1
, (39)
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Coupled Collective 
(Phonon) modes 

from EFT

 Chamel et al (2013)



Matter at Supra-nuclear Density

Softening phase transitions are 
ruled out. But,!
How are hyperons suppressed ? !
When does the nucleon picture 
break down ? !
What can we learn from heavy-
ions experiments ?

The 2 solar mass neutron star !
poses serious challenges: 

 from LQCD

4

been performed. In this case the additional repulsion
provided by the model (II) pushes ⇢th⇤ towards a density
region where the contribution coming from the hyperon-
nucleon potential cannot be compensated by the gain in
kinetic energy. It has to be stressed that (I) and (II) give
qualitatively similar results for hypernuclei. This clearly
shows that an EoS constrained on the available binding
energies of light hypernuclei is not sufficient to draw any
definite conclusion about the composition of the neutron
star core.

The mass-radius relations for PNM and HNM obtained
by solving the Tolman-Oppenheimer-Volkoff (TOV)
equations [47] with the EoS of Fig. 1 are shown in Fig. 2.
The onset of ⇤ particles in neutron matter sizably reduces
the predicted maximum mass with respect to the PNM
case. The attractive feature of the two-body ⇤N interac-
tion leads to the very low maximum mass of 0.66(2)M�,
while the repulsive ⇤NN potential increases the pre-
dicted maximum mass to 1.36(5)M�. The latter result
is compatible with Hartree-Fock and Brueckner-Hartree-
Fock calculations (see for instance Refs. [2–5]).

M
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Figure 2. (Color online) Mass-radius relations. The key is
the same of Fig. 1. Full dots represent the predicted max-
imum masses. Horizontal bands at ⇠ 2M� are the ob-
served masses of the heavy pulsars PSR J1614-2230 [18] and
PSR J0348+0432 [19]. The grey shaded region is the excluded
part of the plot due to causality.

The repulsion introduced by the three-body force plays
a crucial role, substantially increasing the value of the
⇤ threshold density. In particular, when model (II) for
the ⇤NN force is used, the energy balance never favors
the onset of hyperons within the the density domain that
has been studied in the present work (⇢  0.56 fm�3).
It is interesting to observe that the mass-radius relation
for PNM up to ⇢ = 3.5⇢0 already predicts a NS mass
of 2.09(1)M� (black dot-dashed curve in Fig. 2). Even
if ⇤ particles would appear at higher baryon densities,
the predicted maximum mass is consistent with present

astrophysical observations.

In this Letter we have reported on the first Quantum
Monte Carlo calculations for hyperneutron matter, in-
cluding neutrons and ⇤ particles. As already verified
in hypernuclei, we found that the three-body hyperon-
nucleon interaction dramatically affects the onset of hy-
perons in neutron matter. When using a three-body
⇤NN force that overbinds hypernuclei, hyperons appear
around twice saturation density and the predicted max-
imum mass is 1.36(5)M�. By employing a hyperon-
nucleon-nucleon interaction that better reproduces the
experimental separation energies of medium-light hyper-
nuclei, the presence of hyperons is disfavored in the neu-
tron bulk at least until ⇢ = 0.56 fm�3 and the lower
limit for the predicted maximum mass is 2.09(1)M�.
Therefore, within the ⇤N model that we have consid-
ered, the presence of hyperons in the core of the neutron
stars cannot be satisfactory established and thus there is
no clear incompatibility with astrophysical observations
when lambdas are included. We conclude that in order to
discuss the role of hyperons - at least lambdas - in neu-
tron stars, the ⇤NN interaction cannot be completely
determined by fitting the available experimental energies
in ⇤ hypernuclei. In other words, the ⇤-neutron-neutron
component of the ⇤NN will need additional theoret-
ical investigation and a substantial additional amount
of experimental data. In particular, there are some
features of the hyperon-nucleon interaction (⇤-neutron-
neutron channels, spin-orbit contributions) which might
be efficiently constrained only by experiments involving
highly asymmetric hypernuclei and/or excitation of the
hyperon. We believe that our conclusions will not change
qualitatively if other hyperons and/or a v⇤⇤ are included
in the calculation.
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The low-energy n⌃� interactions determine, in part, the role of the strange quark in dense matter,
such as that found in astrophysical environments. The scattering phase shifts for this system
are obtained from a numerical evaluation of the QCD path integral using the technique of lattice
QCD. Our calculations, performed at a pion mass of m⇡ ⇠ 389 MeV in two large lattice volumes,
and at one lattice spacing, are extrapolated to the physical pion mass using e↵ective field theory.
The interactions determined from QCD are consistent with those extracted from hyperon-nucleon
experimental data within uncertainties, and strengthen theoretical arguments that the strange quark
is a crucial component of dense nuclear matter.

The interactions between hyperons and nucleons are im-
portant for understanding the composition of dense nu-
clear matter. In high-density baryonic systems, the large
values of the Fermi energies may make it energetically
advantageous for some of the nucleons to transform into
hyperons via the weak interactions, with the increase in
rest mass being more than compensated for by the de-
crease in combined Fermi energy of the baryon-lepton
system. This is speculated to occur in the interior of neu-
tron stars, but a quantitative understanding of this phe-
nomenon depends on knowledge of the hyperon-nucleon
(YN) interactions in the medium. In this letter we use
n⌃� scattering phase shifts in the 1S0 and 3S1 spin-
channels calculated with Lattice QCD (LQCD) to quan-
tify the energy shift of the ⌃� hyperon in dense neu-
tron matter, as might occur in the interior of a neutron
star. Our results strongly suggest an important role for
strangeness in such environments.

Precise nucleon-nucleon (NN) interactions constrained
by experiment and chiral symmetry, together with nu-
merically small but important three-nucleon interactions,
have served as input to refined many-body techniques for
studying the structure of nuclei, such as Green-function
Monte-Carlo [1], the No-Core Shell Model [2], or lattice
e↵ective field theory [3], which have led to remarkably
successful calculations of the ground states and excited
states of light nuclei, with atomic number A < 14. By
contrast, the YN potentials, which are essential for a first-

principles understanding of the hypernuclei and dense
matter, are only very-approximately known. Therefore,
gaining a quantitative understanding of YN interactions
— on a par with knowledge of the NN interactions —
through experimental and LQCD methods, is a funda-
mental goal of nuclear science.
Existing experimental information about the YN in-

teraction comes from the study of hypernuclei [4, 5], the
analysis of associated ⇤-kaon and ⌃-kaon production in
NN collisions near threshold [6–11], hadronic atoms [12],
and from charge-exchange production of hyperons in
emulsions and pixelated scintillation devices [13]. There
are only a small set of cross-section measurements of the
YN processes, and not surprisingly, the extracted scatter-
ing parameters are not accurately known. The potentials
developed by the Nijmegen [14, 15] and Jülich [16–18]
groups are just two examples of phenomenological mod-
els based on meson exchange, but the couplings in such
models are not completely determined by the NN interac-
tion and are instead obtained by a fit to the available YN
data. In Refs. [14, 15], for example, six di↵erent models
are constructed, each describing the available YN cross-
section data equally well, but predicting di↵erent values
for the phase shifts. E↵ective field theory (EFT) de-
scriptions have also been developed [19–23] and have the
advantage of being model independent.
In the absence of precise experimental measurements,

LQCD calculations can be used to constrain the YN in-
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FIG. 1: LQCD-predicted 1S0 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.
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FIG. 2: LQCD-predicted 3S1 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

tor, thereby determining the LO interaction, including
energy-independent and local potentials, wavefunctions
and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the 1S0 n⌃�

channel are consistent with the SU(3) symmetry expecta-
tions. At m⇡ ⇠ 389 MeV, using a volume extrapolation
as discussed above, we find that this channel has a bound
state, with binding energy B = 25± 9.3± 11 MeV. The
quality of the LQCD data in the 1S0 n⌃� channel is com-
parable to that of its 27-plet partner ⌅�⌅�, analyzed in
detail in Ref. [30] (see also [45]). In the EFT, the coe�-
cient of the LO contact operator in this channel is deter-
mined by tuning it to reproduce the LQCD-determined
binding energy. We find that this channel becomes un-
bound at m⇡

<⇠ 300 MeV, in agreement with Ref. [46],
which constrained the LO contact operator using exper-
imental data. In Fig. 1, we show the predicted 1S0 n⌃�

phase shift at the physical pion mass — (dark, light) blue
bands correspond to (statistical, systematic) uncertain-
ties — and compare with the EFT constrained by ex-
perimental data [23], the Nijmegen NSC97f model [14],
and the Jülich ’04 model [18]. The systematic uncer-
tainties on our predictions include those arising from the
LQCD calculation (see [45]) as well as estimates of omit-

ted higher-order e↵ects in the EFT.
The 3S1-3D1 n⌃� coupled channel is found to be highly

repulsive in the s-wave at m⇡ ⇠ 389 MeV, requiring in-
teractions with a hard repulsive core of extended size.
Such a core, if large enough, would violate a condition re-
quired to use Lüscher’s relation, namely R ⌧ L/2 where
R is the range of the interaction. We have determined
the EFT potential directly by solving the 3-dimensional
Schrödinger equation in finite volume to reproduce the
energy levels obtained in the LQCD calculations. The re-
pulsive core is found to be large, and formally precludes
the use of Lüscher’s relation, but both methods lead to
phase shifts that agree within uncertainties, indicating
that the exponential corrections to Lüscher’s relation are
small. In Fig. 2, we show the predicted 3S1 n⌃� phase
shift at the physical pion mass.
The n⌃� interactions presented here are the crucial

ingredient in calculations that address whether ⌃�’s ap-
pear in dense neutron matter. As a first step, and in order
to understand the competition between attractive and re-
pulsive components of the n⌃� interaction, we adopt a
result due to Fumi for the energy shift due to a static
impurity in a non-interacting Fermi system [47]:

�E = � 1

⇡µ

Z kf

0
dk k

h 3

2
�3S1

(k) +
1

2
�1S0

(k)
i
, (2)

where µ is the reduced mass in the n⌃� system. Us-
ing our LQCD determinations of the phase shifts, and
allowing for a 30% theoretical uncertainty, the resulting
energy shift and uncertainty band is shown in Fig. 3. At
neutron number density ⇢n ⇠ 0.4 fm�3, which may be
found in the interior of neutron stars, the neutron chem-
ical potential is µn ⇠ MN + 150 MeV due to neutron-
neutron interactions, and the electron chemical potential,
µe� ⇠ 200 MeV [48]. Therefore µn + µe� ⇠ 1290 MeV,
and consequently, if µ⌃� = M⌃+�E <⇠ 1290 MeV, that
is, �E <⇠ 100 MeV, then the ⌃�, and hence the strange
quark, will play a role in the dense medium. We find
using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at
⇢n = 0.4 fm�3. Corrections due to correlations among
neutrons are di�cult to estimate and will require many-
body calculations which are beyond the scope of this
study. Despite this caveat, the results shown in Fig. 3
indicate that the repulsion in the n⌃� system is inad-
equate to exclude the presence of ⌃�’s in neutron star
matter, a conclusion that is consistent with previous phe-
nomenological modeling (for a review, see Ref. [49]).

In this letter, we have presented the first LQCD predic-
tions for hypernuclear physics, the 1S0 and 3S1 n⌃� scat-
tering phase shifts shown in Fig. 1 and Fig. 2. While the
LQCD calculations have been performed at a single lat-
tice spacing, lattice-spacing artifacts are expected to be
smaller than the other systematic uncertainties. We an-
ticipate systematically refining the analysis presented in
this letter as greater computing resources become avail-
able. The n⌃� interaction is critical in determining the
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FIG. 1: LQCD-predicted 1S0 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

0 100 200 300 400 500
pLAB (MeV)

-60

-50

-40

-30

-20

-10

0

10

20

30

δ 
 (d

eg
re

es
)

NSC97f
Juelich '04
EFT

FIG. 2: LQCD-predicted 3S1 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

tor, thereby determining the LO interaction, including
energy-independent and local potentials, wavefunctions
and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the 1S0 n⌃�

channel are consistent with the SU(3) symmetry expecta-
tions. At m⇡ ⇠ 389 MeV, using a volume extrapolation
as discussed above, we find that this channel has a bound
state, with binding energy B = 25± 9.3± 11 MeV. The
quality of the LQCD data in the 1S0 n⌃� channel is com-
parable to that of its 27-plet partner ⌅�⌅�, analyzed in
detail in Ref. [30] (see also [45]). In the EFT, the coe�-
cient of the LO contact operator in this channel is deter-
mined by tuning it to reproduce the LQCD-determined
binding energy. We find that this channel becomes un-
bound at m⇡

<⇠ 300 MeV, in agreement with Ref. [46],
which constrained the LO contact operator using exper-
imental data. In Fig. 1, we show the predicted 1S0 n⌃�

phase shift at the physical pion mass — (dark, light) blue
bands correspond to (statistical, systematic) uncertain-
ties — and compare with the EFT constrained by ex-
perimental data [23], the Nijmegen NSC97f model [14],
and the Jülich ’04 model [18]. The systematic uncer-
tainties on our predictions include those arising from the
LQCD calculation (see [45]) as well as estimates of omit-

ted higher-order e↵ects in the EFT.
The 3S1-3D1 n⌃� coupled channel is found to be highly

repulsive in the s-wave at m⇡ ⇠ 389 MeV, requiring in-
teractions with a hard repulsive core of extended size.
Such a core, if large enough, would violate a condition re-
quired to use Lüscher’s relation, namely R ⌧ L/2 where
R is the range of the interaction. We have determined
the EFT potential directly by solving the 3-dimensional
Schrödinger equation in finite volume to reproduce the
energy levels obtained in the LQCD calculations. The re-
pulsive core is found to be large, and formally precludes
the use of Lüscher’s relation, but both methods lead to
phase shifts that agree within uncertainties, indicating
that the exponential corrections to Lüscher’s relation are
small. In Fig. 2, we show the predicted 3S1 n⌃� phase
shift at the physical pion mass.
The n⌃� interactions presented here are the crucial

ingredient in calculations that address whether ⌃�’s ap-
pear in dense neutron matter. As a first step, and in order
to understand the competition between attractive and re-
pulsive components of the n⌃� interaction, we adopt a
result due to Fumi for the energy shift due to a static
impurity in a non-interacting Fermi system [47]:

�E = � 1
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(k) +
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where µ is the reduced mass in the n⌃� system. Us-
ing our LQCD determinations of the phase shifts, and
allowing for a 30% theoretical uncertainty, the resulting
energy shift and uncertainty band is shown in Fig. 3. At
neutron number density ⇢n ⇠ 0.4 fm�3, which may be
found in the interior of neutron stars, the neutron chem-
ical potential is µn ⇠ MN + 150 MeV due to neutron-
neutron interactions, and the electron chemical potential,
µe� ⇠ 200 MeV [48]. Therefore µn + µe� ⇠ 1290 MeV,
and consequently, if µ⌃� = M⌃+�E <⇠ 1290 MeV, that
is, �E <⇠ 100 MeV, then the ⌃�, and hence the strange
quark, will play a role in the dense medium. We find
using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at
⇢n = 0.4 fm�3. Corrections due to correlations among
neutrons are di�cult to estimate and will require many-
body calculations which are beyond the scope of this
study. Despite this caveat, the results shown in Fig. 3
indicate that the repulsion in the n⌃� system is inad-
equate to exclude the presence of ⌃�’s in neutron star
matter, a conclusion that is consistent with previous phe-
nomenological modeling (for a review, see Ref. [49]).

In this letter, we have presented the first LQCD predic-
tions for hypernuclear physics, the 1S0 and 3S1 n⌃� scat-
tering phase shifts shown in Fig. 1 and Fig. 2. While the
LQCD calculations have been performed at a single lat-
tice spacing, lattice-spacing artifacts are expected to be
smaller than the other systematic uncertainties. We an-
ticipate systematically refining the analysis presented in
this letter as greater computing resources become avail-
able. The n⌃� interaction is critical in determining the
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For example understanding a core-collapse supernova requires 
answers to a variety of questions some of which need to be 

answered by nuclear physics, both theoretically and experimentally. MHD jets

Neutrino oscillations play an important role (sets Ye):

Figure Credit: G. Fuller
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