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The Nuclear Landscape and the Big Questions (NAS report)

« How did visible matter come into being and how does it
evolve? (origin of nuclei and atoms) i
* How does subatomic matte organize itself and what

phenomena emerge? (self-organization) . ' 5,
* Are the fundamental interactic ons that are basic to the i 8. = A
structure of matter fully. unders 0d? ’ .‘e' : S '
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Theory of nuclei is demanding

Great recent progress
- * New ideas
Data on exotic nuclei crucial
o long isotopic chains
o low-energy reaction thresholds

o large neutron-to-proton
asymmetries

High performance computing
o algorithmic developments
o benchmarking and validation
o uncertainty quantification
o large-scale computations
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lllustrative physics examples

More excellent examples in the experimental overview | Janssens



Ab-initio frontier: quantitative predictions

12C ground state and Hoyle state

Green’s Function Monte Carlo
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The frontier: medium-mass nuclei
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Nuclear Density Functional Theory: Large-Scale Surveys
The challenge: Unlversal Energy Den3|ty Functlonal
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Small and Large-Amplitude Collective Motion

* New-generation computational frameworks developed
* Time-dependent DFT and its extensions
* Adiabatic approaches rooted in Collective Schrodinger Equation
* Quasi-particle RPA
* Projection techniques
* Applied to HI fusion, fission, coexistence phenomena, collective strength,
superfluid modes Heavy lon fusion
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From nuclei to neutron stars (a multiscale problem) Reddy >

Excluded

S Neutron Star
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Atomic Nuclei: Many-Body Open Quantum Systems

* Facts: (i) nuclear structure is

impacted by couplings to

reaction and decay channels;

(ii) reaction dynamics is
impacted by nuclear structure

* Challenge: clustering, alpha

AN decay, and fission still remain
LRI R AL : major challenges for theory
The- :"1:;:}"_-52:5 * Answer: unified picture of
| i » :«5‘;__*; 'p!‘;__;’i structure and reactions
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Ab initio calculations of ANCs and widths
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Di-neutron correlations in CS/GSM

Ab initio calculations of nuclear spectra
(CC, NCSM/RGM, NCGSM)
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nuclear systems:

* Real-energy continuum shell model

« Complex-energy continuum shell model

* Ab-initio extensions

Profound interdisciplinary connections:

e resonance trapping and super-radiance

» threshold anomalies and channel coupling effects
« spectral fluctuations and statistics of resonances
« clusterization

« spatially extended halos and Efimov states
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Microscopic reaction theory

Ab initio reaction theory
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Fundamental symmetry tests and neutrino physics

« Superallowed Fermi 0* —0* 3-decays
* Neutrinoless double-beta decays

Schiff moment for EDM

* Neutrino-nucleus scattering
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“There is generally significant

| variation among different
1 calculations of the nuclear
| matrix elements for a given

isotope. For consideration of

| future experiments and their
1 projected sensitivity it would
| be very desirable to reduce the

uncertainty in these nuclear

| matrix elements.”
1 (Neutrinoless Double Beta

Decay NSAC Report 2014)



Prospects



Scientific method: our paradigm

design an
perform the experiment
experiment to test the
prediction

The theory-experiment cycle is repeated, continually testing and
modifying the theory, until the theory describes experimental
observations. Then the theory is considered a scientific law.

Yin and yang can be thought of as
complementary (rather than opposing)
forces that interact to form a dynamic
system in which the whole is greater than
the assembled parts.




Experimental context: some thoughts...

 Beam time and cycles are difficult to get and expensive.
Experiment keeps theory honest. Theory could help by being more
involved in assessing the impact of planned runs and projects.
« What is the information content of measured observables?
 Are estimated errors of measured observables meaningful?
« What experimental data are crucial for better constraining current
nuclear models?

* New technologies are essential for providing predictive capability, to
estimate uncertainties, and to assess extrapolations

» Theoretical models are often applied to entirely new nuclear systems
and conditions that are not accessible to experiment

Voyage to
SUPERHEAVY Island

A paradigm shift is needed to enhance the coupling
between theory and experiment
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High Performance Computing and Nuclear Theory

Carlson>

». High performance computing
¥ provides answers to
guestions that neither
experiment nor analytic theory
can address; hence, it

becomes a third leg
supporting the field of nuclear

physics.” (NAC Decadal
Study Report)
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Future: large multi-institutional efforts involving strong coupling between
physics, computer science, and applied math



Theory needs FRIB; FRIB needs Theory
= New Initiative: FRIB Theory Center

It will enhance the national low-energy nuclear physics effort by:

Delivering excellent research in theory relevant to the big
science questions;

Serving as a focal point for stimulating continuous
interactions between theory and experiment;

Rejuvenating the field by creating (bridge/joint) permanent
positions in FRIB theory across the country;

Attracting young talent through the national FRIB theory
fellow program;

Strengthening theory in areas of most need,;

Fostering interdisciplinary collaborations and build scientific
bridges to wider theory communities;

Coordinating a sustainable educational program in
advanced; low-energy nuclear theory (TALENT!!!);
Coordinating international initiatives in theory of rare
isotopes. Building on success of J/F/C-USTIPEN.



Summary (1): Challenges for LE Nuclear Theory

Describe the lightest nuclei in terms of lattice QCD

Develop first-principles framework for light, medium-mass nuclei, and nuclear matter
from 0.1 to twice the saturation density

Develop predictive and quantified nuclear energy density functional rooted in first-
principles theory

Unify the fields of nuclear structure and reactions: we must free ourselves from
limitations imposed by (physical) boundary conditions

Achieve a comprehensive description of direct, semi-direct, pre-equilibrium, and
compound processes for a variety of reactions

Provide the microscopic underpinning of observed, and new, (partial-) dynamical
symmetries and simple patterns

Develop predictive microscopic model of fusion and fission that will provide the
missing data for astrophysics, nuclear security, and energy research

Carry out predictive and quantified calculations of nuclear matrix elements for
fundamental symmetry tests in nuclei and for neutrino physics. Explore the role of
correlations and currents.

» Develop and utilize tools of uncertainty quantification
» Enhance the coupling between theory and experiment
> Take the full advantage of high performance computing



Summary (2): The LRP 2014 Request

Our field

 Establish the FRIB Theory Center. Theory centers were
crucial for RHIC and Jlab communities

« Support TALENT educational initiative

Nuclear Theory in general

« Enhanced support for nuclear theory to realize the full
scientific promise enabled by experimental investments

« Computational initiative: new investments in people,
advanced software, and complementary capacity
computing directed toward nuclear theory

« Continuation of Topical Collaborations: a very effective way
to target specific science questions

« Adequate support for INT: a resource belonging to the
entire nuclear theory community



Summary (3, final)

* The nuclear many-body problem is very complex,
computationally difficult, and interdisciplinary.

« With a fundamental picture of nuclei based on the correct
microphysics, we can remove the empiricism inherent today,
thereby giving us greater confidence in the science we deliver
and predictions we make

* For reliable model-based extrapolations, we need to improve

predictive capability by developing methods to quantify
uncertainties

* We need a paradigm shift to optimize a theory-experiment
loop

* New-generation computers will continue to provide
unprecedented opportunities for nuclear theory

* New theory initiatives for the LRP 2014



BACKUP



How to explain the nuclear landscape from the bottom up? Theory roadmap

Nuclear Landscape

Ab initio
Configuration Interaction
Density Functional Theory
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» Afirst rate theory predicts
* A second rate theory forbids
* Athird rate theory explains

after the facts
Alexander |. Kitaigorodskii
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e NP community-originated scientific programs
with~400 participants per year on a tremendous
diversity of topics

e INT provides a pipeline for our students and post-
docs into tenure track University and permanent
lab positions...over 40 to date

e INT promotes nuclear theory education,
administering the National Nuclear Physics
Summer School, offering TALENT courses &
topical summer schools for advanced students
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